Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.12.27.522023

ABSTRACT

RNA viruses have been shown to express various short RNAs, some of which have regulatory roles during replication, transcription, and translation of viral genomes. However, short viral RNAs (svRNAs) generated by SARS-CoV-1 and SARS-CoV-2 remained largely unexplored, mainly due limitations of the widely used library preparation methods for small RNA deep sequencing and corresponding data processing. By analyzing publicly available small RNA-seq datasets, we observed that human cells infected by SARS-CoV-1 or SARS-CoV-2 produce multiple short viral RNAs (svRNAs), ranging in size from 15 to 26 nt and deriving predominantly from (+) RNA strands. In addition, we verified the presence of the five most abundant SARS-CoV-2 svRNAs in SARS-CoV-2-infected human lung adenocarcinoma cells by qPCR. Interestingly, the copy number of the observed SARS-CoV-2 svRNAs dramatically exceeded the expression of previously reported viral miRNAs in the same cells. We hypothesize that the reported SARS-CoV-2 svRNAs could serve as biomarkers for early infection stages due to their high abundance. Finally, we found that both SARS-CoV-1 and SARS-CoV-2 infection induced up- and down-regulation of multiple endogenous human short RNAs that align predominantly to protein-coding and lncRNA transcripts. Interestingly, a significant proportion of short RNAs derived from full-length viral genomes also aligned to various hg38 sequences, suggesting opportunities to investigate regulatory roles of svRNAs during infection. Further characterization of the small RNA landscape of both viral and host genomes is clearly warranted to improve our understanding of molecular events related to infection and to design more efficient strategies for therapeutic interventions as well as early diagnosis.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.28.450181

ABSTRACT

Several vaccines have been introduced to combat the coronavirus infectious disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current SARS-CoV-2 vaccines include mRNA-containing lipid nanoparticles or adenoviral vectors that encode the SARS-CoV-2 Spike (S) protein of SARS-CoV-2, inactivated virus, or protein subunits. Despite growing success in worldwide vaccination efforts, additional capabilities may be needed in the future to address issues such as stability and storage requirements, need for vaccine boosters, and emergence of SARS-CoV-2 variants or entirely new viruses. Here, we present a novel, well-characterized SARS-CoV-2 vaccine candidate based on extracellular vesicles (EVs) of Salmonella typhimurium that are decorated with the mammalian cell culture-derived Spike receptor-binding domain (RBD). RBD-conjugated outer membrane vesicles (RBD-OMVs) were used to immunize the golden hamster (Mesocricetus auratus) model of COVID-19. Intranasal immunization resulted in high titers of blood anti-RBD IgG as well as detectable mucosal responses. Upon challenge with live virus, hamsters immunized with RBD-OMV, but not animals immunized with unconjugated OMVs or a vehicle control, avoided weight loss, had lower virus titers in bronchoalveolar lavage fluid, and experienced less severe lung pathology. Our results emphasize the value and versatility of OMV-based vaccine approaches.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , Weight Loss , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL